3.145 \(\int \frac{(d+e x^2)^2}{(a+c x^4)^2} \, dx\)

Optimal. Leaf size=349 \[ -\frac{\left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}-\frac{\left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}+\frac{x \left (a e^2+3 c d^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}-\frac{e^2 x}{3 c \left (a+c x^4\right )} \]

[Out]

-(e^2*x)/(3*c*(a + c*x^4)) + (x*(3*c*d^2 + a*e^2 + 6*c*d*e*x^2))/(12*a*c*(a + c*x^4)) - ((3*c*d^2 + 2*Sqrt[a]*
Sqrt[c]*d*e + a*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*c^(5/4)) + ((3*c*d^2 + 2*Sqrt
[a]*Sqrt[c]*d*e + a*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*c^(5/4)) - ((3*c*d^2 - 2*
Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*c^(5/
4)) + ((3*c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*S
qrt[2]*a^(7/4)*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.312522, antiderivative size = 349, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.421, Rules used = {1207, 1179, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{\left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}-\frac{\left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}+\frac{x \left (a e^2+3 c d^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}-\frac{e^2 x}{3 c \left (a+c x^4\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2/(a + c*x^4)^2,x]

[Out]

-(e^2*x)/(3*c*(a + c*x^4)) + (x*(3*c*d^2 + a*e^2 + 6*c*d*e*x^2))/(12*a*c*(a + c*x^4)) - ((3*c*d^2 + 2*Sqrt[a]*
Sqrt[c]*d*e + a*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*c^(5/4)) + ((3*c*d^2 + 2*Sqrt
[a]*Sqrt[c]*d*e + a*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*c^(5/4)) - ((3*c*d^2 - 2*
Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*c^(5/
4)) + ((3*c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*S
qrt[2]*a^(7/4)*c^(5/4))

Rule 1207

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(a + c*x^4)^(p +
 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(x*(d + e*x^2)*(a + c*x^4)^(p + 1))/(
4*a*(p + 1)), x] + Dist[1/(4*a*(p + 1)), Int[Simp[d*(4*p + 5) + e*(4*p + 7)*x^2, x]*(a + c*x^4)^(p + 1), x], x
] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (d+e x^2\right )^2}{\left (a+c x^4\right )^2} \, dx &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}-\frac{\int \frac{-3 c d^2-a e^2-6 c d e x^2}{\left (a+c x^4\right )^2} \, dx}{3 c}\\ &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}+\frac{x \left (3 c d^2+a e^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}+\frac{\int \frac{3 \left (3 c d^2+a e^2\right )+6 c d e x^2}{a+c x^4} \, dx}{12 a c}\\ &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}+\frac{x \left (3 c d^2+a e^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}+\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{\sqrt{a} \sqrt{c}-c x^2}{a+c x^4} \, dx}{8 a^{3/2} c^{3/2}}+\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{\sqrt{a} \sqrt{c}+c x^2}{a+c x^4} \, dx}{8 a^{3/2} c^{3/2}}\\ &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}+\frac{x \left (3 c d^2+a e^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}-\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt{2} a^{7/4} c^{5/4}}-\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a^{3/2} c^{3/2}}+\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a^{3/2} c^{3/2}}\\ &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}+\frac{x \left (3 c d^2+a e^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}-\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}-\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}\\ &=-\frac{e^2 x}{3 c \left (a+c x^4\right )}+\frac{x \left (3 c d^2+a e^2+6 c d e x^2\right )}{12 a c \left (a+c x^4\right )}-\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (3 c d^2+2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{7/4} c^{5/4}}-\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}+\frac{\left (3 c d^2-2 \sqrt{a} \sqrt{c} d e+a e^2\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{7/4} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.171625, size = 295, normalized size = 0.85 \[ \frac{-\frac{8 a^{3/4} \sqrt [4]{c} \left (a e^2 x-c d x \left (d+2 e x^2\right )\right )}{a+c x^4}-\sqrt{2} \left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )+\sqrt{2} \left (-2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )-2 \sqrt{2} \left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \sqrt{2} \left (2 \sqrt{a} \sqrt{c} d e+a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{32 a^{7/4} c^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^2/(a + c*x^4)^2,x]

[Out]

((-8*a^(3/4)*c^(1/4)*(a*e^2*x - c*d*x*(d + 2*e*x^2)))/(a + c*x^4) - 2*Sqrt[2]*(3*c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*e
 + a*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*Sqrt[2]*(3*c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*ArcTan
[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] - Sqrt[2]*(3*c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] - Sqrt[2]*a^
(1/4)*c^(1/4)*x + Sqrt[c]*x^2] + Sqrt[2]*(3*c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/
4)*c^(1/4)*x + Sqrt[c]*x^2])/(32*a^(7/4)*c^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 464, normalized size = 1.3 \begin{align*}{\frac{1}{c{x}^{4}+a} \left ({\frac{de{x}^{3}}{2\,a}}-{\frac{ \left ( a{e}^{2}-c{d}^{2} \right ) x}{4\,ac}} \right ) }+{\frac{\sqrt{2}{e}^{2}}{16\,ac}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }+{\frac{3\,\sqrt{2}{d}^{2}}{16\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }+{\frac{\sqrt{2}{e}^{2}}{32\,ac}\sqrt [4]{{\frac{a}{c}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }+{\frac{3\,\sqrt{2}{d}^{2}}{32\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}{e}^{2}}{16\,ac}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }+{\frac{3\,\sqrt{2}{d}^{2}}{16\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }+{\frac{de\sqrt{2}}{16\,ac}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{de\sqrt{2}}{8\,ac}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{de\sqrt{2}}{8\,ac}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2/(c*x^4+a)^2,x)

[Out]

(1/2*d*e/a*x^3-1/4*(a*e^2-c*d^2)/a/c*x)/(c*x^4+a)+1/16/a/c*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)
*e^2+3/16/a^2*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)*d^2+1/32/a/c*(a/c)^(1/4)*2^(1/2)*ln((x^2+(a/
c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))*e^2+3/32/a^2*(a/c)^(1/4)*2^(1/2)*ln((
x^2+(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))*d^2+1/16/a/c*(a/c)^(1/4)*2^(1/
2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)*e^2+3/16/a^2*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)*d^2+1/16/a
/c*d*e/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))
+1/8/a/c*d*e/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/8/a/c*d*e/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2
)/(a/c)^(1/4)*x-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.92838, size = 3308, normalized size = 9.48 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

1/16*(8*c*d*e*x^3 + (a*c^2*x^4 + a^2*c)*sqrt(-(a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e
^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) + 12*c*d^3*e + 4*a*d*e^3)/(a^3*c^2))*log((81*c^4*d^8 + 108*a*c^3*d^
6*e^2 + 38*a^2*c^2*d^4*e^4 + 12*a^3*c*d^2*e^6 + a^4*e^8)*x + (2*a^6*c^4*d*e*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e
^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) + 27*a^2*c^4*d^6 + 15*a^3*c^3*d^4*e^2 + 5*a^4*
c^2*d^2*e^4 + a^5*c*e^6)*sqrt(-(a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^
2*e^6 + a^4*e^8)/(a^7*c^5)) + 12*c*d^3*e + 4*a*d*e^3)/(a^3*c^2))) - (a*c^2*x^4 + a^2*c)*sqrt(-(a^3*c^2*sqrt(-(
81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) + 12*c*d^3*e + 4*a*
d*e^3)/(a^3*c^2))*log((81*c^4*d^8 + 108*a*c^3*d^6*e^2 + 38*a^2*c^2*d^4*e^4 + 12*a^3*c*d^2*e^6 + a^4*e^8)*x - (
2*a^6*c^4*d*e*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)
) + 27*a^2*c^4*d^6 + 15*a^3*c^3*d^4*e^2 + 5*a^4*c^2*d^2*e^4 + a^5*c*e^6)*sqrt(-(a^3*c^2*sqrt(-(81*c^4*d^8 + 36
*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) + 12*c*d^3*e + 4*a*d*e^3)/(a^3*c^2
))) - (a*c^2*x^4 + a^2*c)*sqrt((a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^
2*e^6 + a^4*e^8)/(a^7*c^5)) - 12*c*d^3*e - 4*a*d*e^3)/(a^3*c^2))*log((81*c^4*d^8 + 108*a*c^3*d^6*e^2 + 38*a^2*
c^2*d^4*e^4 + 12*a^3*c*d^2*e^6 + a^4*e^8)*x + (2*a^6*c^4*d*e*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2
*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) - 27*a^2*c^4*d^6 - 15*a^3*c^3*d^4*e^2 - 5*a^4*c^2*d^2*e^4 - a
^5*c*e^6)*sqrt((a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)
/(a^7*c^5)) - 12*c*d^3*e - 4*a*d*e^3)/(a^3*c^2))) + (a*c^2*x^4 + a^2*c)*sqrt((a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a
*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) - 12*c*d^3*e - 4*a*d*e^3)/(a^3*c^2))
*log((81*c^4*d^8 + 108*a*c^3*d^6*e^2 + 38*a^2*c^2*d^4*e^4 + 12*a^3*c*d^2*e^6 + a^4*e^8)*x - (2*a^6*c^4*d*e*sqr
t(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 22*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) - 27*a^2*c^4*d^
6 - 15*a^3*c^3*d^4*e^2 - 5*a^4*c^2*d^2*e^4 - a^5*c*e^6)*sqrt((a^3*c^2*sqrt(-(81*c^4*d^8 + 36*a*c^3*d^6*e^2 + 2
2*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8)/(a^7*c^5)) - 12*c*d^3*e - 4*a*d*e^3)/(a^3*c^2))) + 4*(c*d^2 - a
*e^2)*x)/(a*c^2*x^4 + a^2*c)

________________________________________________________________________________________

Sympy [A]  time = 2.12239, size = 275, normalized size = 0.79 \begin{align*} \operatorname{RootSum}{\left (65536 t^{4} a^{7} c^{5} + t^{2} \left (2048 a^{5} c^{3} d e^{3} + 6144 a^{4} c^{4} d^{3} e\right ) + a^{4} e^{8} + 20 a^{3} c d^{2} e^{6} + 118 a^{2} c^{2} d^{4} e^{4} + 180 a c^{3} d^{6} e^{2} + 81 c^{4} d^{8}, \left ( t \mapsto t \log{\left (x + \frac{- 8192 t^{3} a^{6} c^{4} d e + 16 t a^{5} c e^{6} - 48 t a^{4} c^{2} d^{2} e^{4} - 144 t a^{3} c^{3} d^{4} e^{2} + 432 t a^{2} c^{4} d^{6}}{a^{4} e^{8} + 12 a^{3} c d^{2} e^{6} + 38 a^{2} c^{2} d^{4} e^{4} + 108 a c^{3} d^{6} e^{2} + 81 c^{4} d^{8}} \right )} \right )\right )} + \frac{2 c d e x^{3} + x \left (- a e^{2} + c d^{2}\right )}{4 a^{2} c + 4 a c^{2} x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2/(c*x**4+a)**2,x)

[Out]

RootSum(65536*_t**4*a**7*c**5 + _t**2*(2048*a**5*c**3*d*e**3 + 6144*a**4*c**4*d**3*e) + a**4*e**8 + 20*a**3*c*
d**2*e**6 + 118*a**2*c**2*d**4*e**4 + 180*a*c**3*d**6*e**2 + 81*c**4*d**8, Lambda(_t, _t*log(x + (-8192*_t**3*
a**6*c**4*d*e + 16*_t*a**5*c*e**6 - 48*_t*a**4*c**2*d**2*e**4 - 144*_t*a**3*c**3*d**4*e**2 + 432*_t*a**2*c**4*
d**6)/(a**4*e**8 + 12*a**3*c*d**2*e**6 + 38*a**2*c**2*d**4*e**4 + 108*a*c**3*d**6*e**2 + 81*c**4*d**8)))) + (2
*c*d*e*x**3 + x*(-a*e**2 + c*d**2))/(4*a**2*c + 4*a*c**2*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.13706, size = 497, normalized size = 1.42 \begin{align*} \frac{2 \, c d x^{3} e + c d^{2} x - a x e^{2}}{4 \,{\left (c x^{4} + a\right )} a c} + \frac{\sqrt{2}{\left (3 \, \left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} + 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{16 \, a^{2} c^{3}} - \frac{\sqrt{2}{\left (3 \, \left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} - 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{32 \, a^{2} c^{3}} + \frac{\sqrt{2}{\left (3 \, \left (a c^{3}\right )^{\frac{1}{4}} a c^{4} d^{2} + \left (a c^{3}\right )^{\frac{1}{4}} a^{2} c^{3} e^{2} + 2 \, \left (a c^{3}\right )^{\frac{3}{4}} a c^{2} d e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{16 \, a^{3} c^{5}} + \frac{\sqrt{2}{\left (3 \, \left (a c^{3}\right )^{\frac{1}{4}} a c^{4} d^{2} + \left (a c^{3}\right )^{\frac{1}{4}} a^{2} c^{3} e^{2} - 2 \, \left (a c^{3}\right )^{\frac{3}{4}} a c^{2} d e\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{32 \, a^{3} c^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^2,x, algorithm="giac")

[Out]

1/4*(2*c*d*x^3*e + c*d^2*x - a*x*e^2)/((c*x^4 + a)*a*c) + 1/16*sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d^2 + (a*c^3)^(1/4
)*a*c*e^2 + 2*(a*c^3)^(3/4)*d*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3) - 1/32*
sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d^2 + (a*c^3)^(1/4)*a*c*e^2 - 2*(a*c^3)^(3/4)*d*e)*log(x^2 - sqrt(2)*x*(a/c)^(1/4
) + sqrt(a/c))/(a^2*c^3) + 1/16*sqrt(2)*(3*(a*c^3)^(1/4)*a*c^4*d^2 + (a*c^3)^(1/4)*a^2*c^3*e^2 + 2*(a*c^3)^(3/
4)*a*c^2*d*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^3*c^5) + 1/32*sqrt(2)*(3*(a*c^3)^
(1/4)*a*c^4*d^2 + (a*c^3)^(1/4)*a^2*c^3*e^2 - 2*(a*c^3)^(3/4)*a*c^2*d*e)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqr
t(a/c))/(a^3*c^5)